8 Bibliography

[1]    Nonlinear optics - wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Nonlinear_optics. URL http://en.wikipedia.org/wiki/Nonlinear_optics.

[2]    Quantum efficiency - wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Quantum_efficiency. URL http://en.wikipedia.org/wiki/Quantum_efficiency.

[3]    Matthew C. Beard, Kelly P. Knutsen, Pingrong Yu, Joseph M. Luther, Qing Song, Wyatt K. Metzger, Randy J. Ellingson, and Arthur J. Nozik. Multiple exciton generation in colloidal silicon nanocrystals. Nano Letters, 7(8):2506–2512, 2007. ISSN 1530-6984. doi: 10.1021/nl071486l. URL http://pubs.acs.org/doi/abs/10.1021/nl071486l.

[4]    G. Belomoin, E. Rogozhina, J. Therrien, P. Braun, L. Abuhassan, M. Nayfeh, L. Wagner, and L. Mitas. Effects of surface termination on the band gap of ultrabright si29 nanoparticles: Experiments and computational models. Physical Review B, 65(19), 2002. ISSN 0163-1829. doi: 10.1103/PhysRevB.65.193406. URL http://link.aps.org/doi/10.1103/PhysRevB.65.193406.

[5]    V. A. Belyakov, V. A. Burdov, R. Lockwood, and A. Meldrum. Silicon nanocrystals: Fundamental theory and implications for stimulated emission. Advances in Optical Technologies, 2008.

[6]    John C. de Mello, H. Felix Wittmann, and Richard H. Friend. An improved experimental determination of external photoluminescence quantum efficiency. Advanced Materials, 9(3):230–232, 1997. doi: 10.1002/adma.19970090308. URL http://dx.doi.org/10.1002/adma.19970090308.

[7]    Christophe Delerue and Guy Allan. Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells. Physical Review B, 81(12), 2010. ISSN 1098-0121. doi: 10.1103/PhysRevB.81.125306. URL http://link.aps.org/doi/10.1103/PhysRevB.81.125306.

[8]    A. K. Gaigalas, L. Wang, H. J He, and P. DeRose. Procedures for wavelength calibration and spectral response correction of CCD array spectrometers. Journal of Research of the National Institute of Standards and Technology, 114(4), 2009.

[9]    Bahram Jalali. MAKING SILICON LASE. Scientific American, 296(2):58 – 65, 2007. ISSN 00368733. URL http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=23639021&loginpage=Login.asp&site=ehost-_live.

[10]    Jr. Jellison, G. E. Modine, and F. A. Modine. Appl. Phys. Letters, 41(2):180–182, 1982.

[11]    M. A. Kastner and J. H. Stathis. Time-resolved photoluminescence in amorphous silicon dioxide. Phys. Rev. B, 35(6):2972–2979, 1987. doi: 10.1103/PhysRevB.35.2972.

[12]    Michael D. Kelzenberg, Shannon W. Boettcher, Jan A. Petykiewicz, Daniel B. Turner-Evans, Morgan C. Putnam, Emily L. Warren, Joshua M. Spurgeon, Ryan M. Briggs, Nathan S. Lewis, and Harry A. Atwater. Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications. Nature Materials, 2010. ISSN 1476-1122. doi: 10.1038/nmat2635. URL http://www.nature.com/doifinder/10.1038/nmat2635.

[13]    J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas. Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO. Journal of Applied Physics, 86:6128, 1999.

[14]    I. Pelant. Optical gain at the f-band of oxidized silicon nanocrystals. J. Phys. D: Appl. Phys, 42(135102):135102, 2009.

[15]    Valery Rupasov and Victor Klimov. Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states. Physical Review B, 76(12), 2007. ISSN 1098-0121. doi: 10.1103/PhysRevB.76.125321. URL http://link.aps.org/doi/10.1103/PhysRevB.76.125321.

[16]    Amir Sa’ar. Photoluminescence from silicon nanostructures: The mutual role of quantum confinement and surface chemistry. Journal of Nanophotonics, 3(032501), March 2009.

[17]    A. Shabaev, Al. L. Efros, and A. J. Nozik. Multiexciton generation by a single photon in nanocrystals. Nano Letters, 6(12):2856–2863, 2006. ISSN 1530-6984. doi: 10.1021/nl062059v. URL http://pubs.acs.org/doi/abs/10.1021/nl062059v.

[18]    S. M. Sze. Physics of Semiconductor Devices, 1981.

[19]    S. Takeoka, M. Fujii, and S. Hayashi. Size-dependent photoluminescence from surface-oxidized si nanocrystals in a weak confinement regime. Physical Review B, 62(24): 16820–16825, 2000.

[20]    D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nature Photonics, 2(2):105–109, 2008. ISSN 1749-4885. doi: 10.1038/nphoton.2007.279. URL http://www.nature.com/doifinder/10.1038/nphoton.2007.279.

[21]    D. Timmerman, I. Izeddin, and T. Gregorkiewicz. Saturation of luminescence from si nanocrystals embedded in SiO2. physica status solidi (a), 207(1):183–187, 2010. ISSN 18626300. doi: 10.1002/pssa.200925363. URL http://doi.wiley.com/10.1002/pssa.200925363.

[22]    M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Physical Review Letters, 82 (1):197–200, 1999.